Internal Hexagon Implants	11-23
Conical Connection Implants	24-29
One-Piece Implants	30-35
Orthodontic Mini-Screws	36-39

2.42mr

DENTAL IMPLANTS

INTERNAL HEXAGON IMPLANTS

MOR Implant	12-13
RBM Implant	14-15
ABA Implant	16-17
CFI Implant	18-19
MAX Implant	20-21
ZYG Implant	22-23

Scan the QR Code to visit GDT Implants website

Ø3.5

Ø3.75

Ø4.2

Ø5.0

Ø6.0

DENTAL IMPLANTS

GDT

MOR - Spiral Implant

MOR Implant is a highly compatible implant solution based on the popular Internal Hexagon connection with SLA - Sand blast, double etched in acid surface treatment. With its tapered body and exceptional self-drilling capabilities, it establishes a strong and stable connection suitable for immediate loading. MOR Implant adapts to various bone types and augmentation procedures, making it an ideal choice for a wide range of patients.

CONNECTION: Internal Hexagon 2.42mm.

Slim Platform - Internal Hexagon 2.0mm. MATERIAL: Ti-6AL-4VELI (Titanium grade 5). SURFACE TREATMENT: SLA - Sand blast, double etched in acid. STERILIZATION: Gamma irradiation.

SPECIFICATIONS:

CONNECTION AND PLATFORM SWITCHING

- Internal Hexagon One universal platform for all diameters.
- Minimizes crestal bone loss, promotes bone and soft tissue growth, improves natural aesthetics.

TAPERED BODY WITH SPIRAL DESIGN

- Optimal soft tissue support .
- Excellent primary stability.
- Improves bone condensation during insertion.

AGGRESSIVE APICAL THREADS

 Allow for more aggressive bone engagement for indications such as immediate extraction sockets, poor bone quality, and immediate loading.

SLA - SANDBLAST, LARGE GRIT, ACID-ETCH

Enhances dental implant stability and osseointegration, improving long-term success rates.

SELF TAPPING SYSTEM

- Self-tapping.
- Self-drilling.
- Increases load distribution.

ROUND APEX

- Enhances implant stability.
- Protects sinus from perforation, and minimizes the risk of anatomical structure damage.

							Dental Implants 🖇
			D1 (mm)	D2 (mm)	D3 (mm)	L (mm)	CODE
	$\bigcirc)$					10 11.5	S3010 S3011
X	\leq		Ø3.0	Ø2.75	Ø2.3	13	S3013
	2.0mm					16	S3016
/						8	M3508
(1	\square					10	M3510
	\bigcirc		Ø3.5	Ø3.1	Ø2.4	11.5	M3511
						13	M3513
2	2.42mm					16	M3516
	DI					8	M3708
						10	M3710
٤/٢	$ \sim 1 $	31	Ø3.75	Ø3.75	Ø3.1	11.5	M3711
<u>۶</u> /		3				13	M3713
{∕∕≂		3				16	M3716
\$/ Æ		1				6	M4206
$\langle E$		2				8	M4208
\$∕,₹		ς	Ø4.2	Ø3.95	Ø3.2	10	M42I0
5/E						11.5	M4211
d/F		ר כ				13	M4213
$\nabla /$	7///	L				16	ME006
/</th <th></th> <th>7</th> <th></th> <th></th> <th></th> <th>0</th> <th>M5008</th>		7				0	M5008
V/	////					10	M5010
/</th <th> 7</th> <th>></th> <th>Ø5.0</th> <th>Ø4.6</th> <th>Ø4.1</th> <th>10</th> <th>M5010</th>	7	>	Ø5.0	Ø4.6	Ø4.1	10	M5010
$\Delta / /$						13	M5013
\leq //						16	M5015
2/1	$//\Lambda$					6	M6006
\sim	K					8	M6008
\prec	$ \rightarrow$.	Ø6 0	Ø5.6	Ø51	10	M6010
~~		t	2010	2010	2011	11.5	M6011
						13	M6013
Dril Prot	ling cocol	Marking Drill	Ø2.5 Ø2.8 Ø2.8	Ø3.2 Ø3.2 Ø2.5x3.75	Ø2.7x4.0 Ø3.65 Countersink	Ø4.5	Ø5.2 Countersink Ø5.0x6.0
Ø3.0	Soft Bone Hard Bone	•—					
Ø3.5	Soft Bone Hard Bone	• •					
Ø3.75	Soft Bone Hard Bone	•— •—					
Ø4.2	Soft Bone Hard Bone	•— •—			-•	-•	
Ø5.0	Soft Bone Hard Bone	•— •—				()
aco	Soft Bone	•			•	•	
0.00	Hard Bone	•	-00((

The suggested drilling protocol is only a recommendation and should not replace the doctor's opinion.

l Hex

DENTAL IMPLANTS

RBM - Spiral Implant

RBM Implant is a highly compatible implant solution based on the popular Internal Hexagon connection with RBM - Resorbable Blast Media surface treatment. With its tapered body and exceptional self-drilling capabilities, it establishes a strong and stable connection suitable for immediate loading. MOR Implant adapts to various bone types and augmentation procedures, making it an ideal choice for a wide range of patients.

CONNECTION: Internal Hexagon 2.42mm.

Slim Platform (Ø3.0mm) Internal Hexagon 2.0mm. <u>MATERIAL:</u> Ti-6AL-4VELI (Titanium grade 5). <u>SURFACE TREATMENT:</u> RBM - Resorbable Blast Media. <u>STERILIZATION:</u> Gamma irradiation.

SPECIFICATIONS:

CONNECTION AND PLATFORM SWITCHING

- Internal Hexagon One universal platform for all diameters.
- Minimizes crestal bone loss, promotes bone and soft tissue growth, improves natural aesthetics.

TAPERED BODY WITH SPIRAL DESIGN

- Optimal soft tissue support.
- Excellent primary stability.
- Improves bone condensation during insertion.

3

AGGRESSIVE APICAL THREADS

 Allow for more aggressive bone engagement for indications such as immediate extraction sockets, poor bone quality, and immediate loading.

RBM - RESORBABLE BLAST MEDIA

Promotes faster and stronger bone integration, enhancing the stability of dental implants.

SELF TAPPING SYSTEM

- Self-tapping.
- Self-drilling.
- Increases load distribution.

ROUND APEX

- Enhances implant stability.
- Protects sinus from perforation, and minimizes the risk of anatomical structure damage.

PACKAGE CONTENT

Ρ

Ø3

Ø3

Ø4

Ø5

(D1 (mm)	D2 (mm)	D3 (mm)	L (mm)	CODE
	\bigcirc				10	R3010
		Ø3.0	Ø2.75	Ø2.3	11.5	R3011
2	.0mm				13	R3013
1					8	R3508
1					10	R3510
K		Ø3.5	Ø3.1	Ø2.4	11.5	R3511
					13	R3513
:2.	42mm				16	R3516
	D1				6	R3706
					8	R3708
1			<i><i>A 7 7 7 7 7 7 7 7 7 7 </i></i>	<i>α</i> -1	10	R3710
_	<u> </u>	Ø3:75	Ø3.75	Ø2.3 10 Ø2.3 11.5 13 8 Ø2.4 11.5 13 6 Ø3.1 10 13.1 16 Ø3.2 100 11.5 13 16 6 Ø4.1 100 11.5 13 16 6 Ø4.1 100 11.5 13 16 8 Ø4.1 100 11.5 13 16 8 Ø3.2 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 <th>11.5</th> <th>R3711</th>	11.5	R3711
E	$\leq / \langle \rangle$				13	R3713
Ē					16	R3716
E					6	R4206
Ē					8	R4208
Ŕ	> / L	<i></i>	<i><i><i>α</i>- <i>--</i></i></i>	~ ~ ~	10	R4210
		Ø4.2	Ø3.95	Ø3.2	11.5	R4211
					13	R4213
					16	R4216
					6	R5006
/ /	$ $ $ $				8	R5008
/ /		<i><i></i><i></i></i>	<i></i>	<i>a</i> ()	10	R5010
/ /		Ø5.0	Ø4.6	Ø4.1	11.5	R5011
/ /					13	R5013
					16	R5016
-	D3					
	D2					
	₹ 1		ι		т.	
ril		22.5 22.8)3.2 5x3.7	7x4.1	75X4	
		~ ~ ~	Q2.5	Ø 05	037	
0						·
	Saft Dana			• •	•••	U
0	Hard Bone					
5	Soft Bone	-0-0-(
2	Hard Bone	-00(
75	Soft Bone					
	Soft Bone					
2	Hard Bone	-00(• •	O	-0	
0	Soft Bone	-00(• • • • •	O	•	
0	Hard Bone 🛛 🕘 —	-0(O		-0

• The suggested drilling protocol is only a recommendation and should not replace the doctor's opinion.

DENTAL IMPLANTS

ABA - Spiral Implant

ABA Implant is a highly compatible implant solution based on the popular Internal Hexagon connection with SLA - Sand blast, double etched in acid surface treatment. With its tapered body and exceptional self-drilling capabilities, it establishes a strong and stable connection suitable for immediate loading. ABA Implant can be used in all types of surgical procedures - two stages, immediate loading, and flapless for all types of ridges. It works especially well on narrow ridges without needing prior bone grafting.

CONNECTION: Internal Hexagon 2.42mm. MATERIAL: Ti-6AL-4VELI (Titanium grade 5). SURFACE TREATMENT: SLA - Sand blast, double etched in acid. **STERILIZATION:** Gamma irradiation.

SPECIFICATIONS:

CONNECTION AND PLATFORM SWITCHING

- Internal Hexagon 2.42mm One universal platform for all diameters.
- Minimizes crestal bone loss, promotes bone and soft tissue growth, improves natural aesthetics.

TAPERED BODY WITH SPIRAL DESIGN

- Optimal soft tissue support .
 - Excellent primary stability.
 - Improves bone condensation during insertion.

AGGRESSIVE APICAL THREADS

 Allow for more aggressive bone engagement for indications such as immediate extraction sockets, poor bone quality, and immediate loading.

SLA - SANDBLAST, LARGE GRIT, ACID-ETCH

Enhances dental implant stability and osseointegration, improving long-term success rates.

SELF TAPPING SYSTEM

- Self-tapping. Self-drilling.
- Increases load distribution.

APEX · Enhances implant stability. • Sharp and deep threads

Implant

Implant

Holder

Cover

Screw

\frown					
	D1 (mm)	D2 (mm)	D3 (mm)	L (mm)	CODE
\bigcirc				8	A3508
				10	A3510
42mm	Ø3.5	Ø3.1	Ø2.4	11.5	A3511
				13	A3513
DI				16	A3516
				8	A3708
				10	A3710
<u> </u>	Ø3.75	Ø3.75	Ø3.1	11.5	A3711
	$\overline{\langle } / \rangle$		13	A3713	
				16	A3716
	Ø4.2 Ø	Ø3.95	Ø3.2	6	A4206
				8	A4208
				10	A4210
				11.5	A4211
$\times//\zeta$				13	A4213
				16	A4216
				6	A5006
				8	A5008
	ØF O		Ø/1	10	A5010
	Ø5.0	Ø4.6	Ø4.1	11.5	A5011
				13	A5013
				16	A5016
				6	A6006
1/15				8	A6008
///D	Ø6.0	Ø5.6	Ø5.1	10	A6010
D3				11.5	A6011
D2				13	A6013

· The suggested drilling protocol is only a recommendation and should not replace the doctor's opinion

D1 (mm) D2 (mm) D3 (mm)

CODE

L (mm)

CFI - Cylindrical Implant

CFI Implant is a highly compatible implant solution based on the popular Internal Hexagon connection with SLA - Sand blast, double etched in acid surface treatment. perfect for dense bone cases, but appropriate for all types of bone augmentation procedures. It's strong fit and proven tapered design ensure reliability. Micro rings optimize shear strength, while the combined cylindrical and conical shape with V-shaped threads enhance stability. The flat-cutting apex allows final adjustments during placement.

CONNECTION: Internal Hexagon 2.42mm.

MATERIAL: Ti-6AL-4VELI (Titanium grade 5).

SURFACE TREATMENT: SLA - Sand blast, double etched in acid. **STERILIZATION:** Gamma irradiation.

SPECIFICATIONS:

CONNECTION AND PLATFORM SWITCHING

- Internal Hexagon 2.42mm One universal platform for all diameters.
- Minimizes crestal bone loss, promotes bone and soft tissue growth, improves natural aesthetics.

V-SHAPED THREADS AND MICRO RINGS

- Improved Stability.
 - Deliver optimal surface area, better load distribution, and reduced crestal stress.

TAPERED BODY WITH CYLINDRICAL AND CONICAL SHAPE

- Excellent primary stability.
- Cylindrical shape promotes long-term osseointegration by enlarging surface area and bone to implant contact.

SLA - SANDBLAST, LARGE GRIT, ACID-ETCH

 Enhances dental implant stability and osseointegration, improving long-term success rates.

FLAT APEX

Self-tapping.Self-drilling.

SELF TAPPING SYSTEM

Enhances implant stability.

Increases load distribution.

• Allows final adjustments during placement.

PACKAGE CONTENT

• • •	• •	• •			
			8	C3508	
			10	C3510	
Ø3.5	Ø2.8	Ø2.1	11.5	C3511	
			13	C3513	
			16	C3516	
		8	C3708		
			10	C3710	
Ø3.75	Ø3.2	Ø2.5	11.5	C3711	
			13	C3713	
			16	C3716	
	Ø3.6	Ø2.9	6	C4206	
			8	C4208	
al a			10	C4210	
Ø4.Z			11.5	C4211	
			13	C4213	
			16	C4216	
			6	C5006	
			8	C5008	
Ø5 0	<i>a</i> 2	ØZ E	10	C5010	
Ø5.0	Ø4.Z	Ø3.5	11.5	C5011	
			13	C5013	
			16	C5016	
			6	C6006	
			8	C6008	
Ø6.0	Ø6.0 Ø5.2	Ø5.2 Ø4.5	Ø4.5	10	C6010
			11.5	C6011	
		13	C6013		

· The suggested drilling protocol is only a recommendation and should not replace the doctor's opinion.

Internal Hex

DENTAL IMPLANTS

GD⁴ Dental Implants

MAX - Basal/Cortical Spiral Implant

MAX Implant is a highly compatible implant solution based on the popular Internal Hexagon connection with RBM - Resorbable Blast Media surface treatment. Specially recommended for soft bone, but suitable for all bone types. MAX offers sharp, deep threads and aggressive threads, and can be placed immediately without the waiting period of osteointegration or additional augmentation with bone replacement materials. The implant is placed with the threads orthogonally to the occlusion load, ensuring remarkable stability in the cortical bone and improving chewing load distribution.

CONNECTION: Internal Hexagon 2.42mm. MATERIAL: Ti-6AL-4VELI (Titanium grade 5). SURFACE TREATMENT: RBM - Resorbable Blast Media. STERILIZATION: Gamma irradiation.

SPECIFICATIONS:

CONNECTION AND PLATFORM SWITCHING

- Internal Hexagon 2.42mm One universal platform for all diameters.
- Minimizes crestal bone loss, promotes bone and soft tissue growth, improves natural aesthetics.

BASAL/CORTICAL BONE POSITIONING

- Smooth-surface neck.
- Ideal for patients with bone structure problems.
- Better chance of success and durability.Even chewing load distribution.

SHARP, DEEP, AND AGGRESSIVE THREADS

• Can be placed immediately without the waiting period of osteointegration or additional augmentation with bone replacement materials.

RBM - RESORBABLE BLAST MEDIA

Promotes faster and stronger bone integration, enhancing the stability of dental implants.

TAPERED THREAD AND TAPERED CORE BODY

- Excellent primary stability.
- Improves bone condensation during insertion.

SELF TAPPING SYSTEM

Self-tapping.Minimal drilling.

PACKAGE CONTENT

D1 (mm)	D2 (mm)	L1 (mm)	L2 (mm)	CODE
	1.8	10	4.5	G4210
	1.8	11.5	4.7	G4211
	1.8	13	5	G4213
a s	1.8	16	6	G4216
Ø4.Z	2.5	18	7	G4218
	2.5	20	7.5	G4220
	2.5	22.5	7.5	G4222
	2.5	25	7.5	G4225
	1.8	8	4.1	G5008
	1.8	10	4.5	G5010
	1.8	11.5	4.7	G5011
Ø5.0	1.8	13	5	G5013
	1.8	16	6	G5016
	1.8	18	7	G5018
	1.8	20	7.5	G5020
	2	8	4.1	G6008
	2	10	4.5	G6010
Ø6.0	2	11.5	4.7	G6011
	2	13	5	G6013
	2	16	6	G6016

500-700

O

500-700

2.42mm

ZYG - Zygomatic Implant

ZYG Implant is a highly compatible implant solution based on the popular Internal Hexagon connection with RBM - Resorbable Blast Media surface treatment. specifically created to address issues concerning a depleted upper jawbone, making them highly suitable for graft-less treatment with immediate loading. The smooth and polished implant neck facilitates effortless insertion, and the sharp and robust threads at the apex firmly anchor the implant to the zygomatic bone. These implants are intentionally designed for an extramaxillary approach.

CONNECTION: Internal Hexagon 2.42mm. MATERIAL: Ti-6AL-4VELI (Titanium grade 5). SURFACE TREATMENT: RBM - Resorbable Blast Media. STERILIZATION: Gamma irradiation.

• Internal Hexagon 2.42mm.

SMOOTH SURFACE NECK

CONNECTION

aesthetics.

DACKACE CONTENT Holder Screw

SPECIFICATIONS:

AGGRESSIVE APICAL THREADS

 Allow for more aggressive bone engagement for indications such as immediate extraction sockets, poor bone quality, and immediate loading.

• Minimizes crestal bone loss, promotes bone

and soft tissue growth, improves natural

Easy insertion to the zygomatic bone.

RBM - RESORBABLE BLAST MEDIA

Promotes faster and stronger bone integration, enhancing the stability of dental implants.

TAPERED BODY WITH SPIRAL DESIGN

- Optimal soft tissue support .
- Excellent primary stability.
- Improves bone condensation during insertion.

SELF TAPPING SYSTEM

- Self-tapping.
- Minimal drilling.

<u></u>	ACRAGE	CONTENT
C		Enternation (20034) Enternation (20034) Enternation (20034)
	Outside	e Tube
	Inside	Tube
ver	Implant	Implant

П

	D (mm)	D1 (mm)	L (mm)	CODE								
		30	Z4230									
			32.5	Z4232								
			35	Z4235								
			37.5	Z4237								
	Ø4.2	3.5							40	Z4240		
			42.5	Z4242								
			3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	45	Z4245
			47.5	Z4247								
			50	Z4250								
							52.5	Z4252				
			55	Z4255								
			57.5	Z4257								
			60	Z4260								

DRILLING PROCEADURE

- Irrigation is strongly advised throughout the drilling procedure. When drilling with irrigation, use an intermittent motion to allow debris to be flushed away.
- Continue until the required depth is reached.
- Do not exceed 1500rpm.

CAUTION

- During drilling procedures, avoid lateral pressure on the drills - Lateral pressure to the drill can cause drill fracture.
- Before beginning drilling activities, ensure that the drill is properly fastened into the hand-piece.

INTERNAL HEXAGON PROSTHETICS

Cement-Retained Restoration	41-59
Screw-Retained Restoration	61-66
Overdenture Restoration	67-73

INTERNAL HEXAGON PEOSTHETICS CEMENT-RETAINED RESTORATION

Healing Caps	42-43
Screws	43
Impression Coping Transfers	44-45
Analogs	46-47
Straight Abutments	48-49
Angulated Abutments	50-51
Temporary Abutments	52-53
Zirconia Abutments	54-55
Casting Abutments	56-57
CAD/CAM Abutments	58-60

Scan the QR Code to visit GDT Implants website

() 1.25mm

Platform Diameter

INTERNAL HEX

Retained

Cement-Retained

SCREWS

Ti-6AL-4VELI (Titanium grade 5).

MATERIAL:

CODE

	ABUTMENT	SCREWS	COVER	SCREWS
ТҮРЕ	Slim	Standard	Slim	Standard
Р	Ø1.55mm	Ø1.75mm	Ø1.55mm	Ø1.75mm
D	Ø1.8mm	Ø2.0mm	Ø3.0mm	Ø3.8mm
CODE	SA-SL	SA	CS-SL	CS

HEALING CAPS

Their primary purpose is to facilitate the healing process of both soft and hard tissues surrounding the implant. These caps not only protect the implant from the accumulation of plaque and debris but also aid in shaping the gumline for optimal aesthetics.

MATERIAL:

Ti-6AL-4VELI (Titanium grade 5).

TORQUE TIGHTENING: 15 Ncm (Recommendation).

	CLIM				Platform - Ø3mm		
SLIM			Diameter - Ø3.5mm				
с С –	2mm	3mm	4mm	5mm	6mm		
	9		Ŷ				
CODE	HCS2-SL	HCS3-SL	HCS4-SL	HCS5-SL	HCS6-SL		

NARROW				Platform Diameter	- Ø3.8mm - Ø3.8mm
L	3mm	4mm	5mm	6mm	7mm
	-	9			
CODE	HCN3	HCN4	HCN5	HCN6	HCN7

STANDARD					Platform - Ø Diameter - Ø	3.8mm 4.5mm
L	2mm	3mm	4mm	5mm	6mm	7mm
	Ţ	P				
CODE	HCS2	HCS3	HCS4	HCS5	HCS6	HCS7

IMPRESSION COPING TRANSFERS

Cement-Retained

Provide accuracy during impression-taking to ensure the best possible results with every use. Can be safely sterilized in an autoclave for added security. Ideal for single tooth restorations, bridges, partial dentures, and full dentures alike.

MATERIAL: Stainless Steel.

PACKAGED WITH:

Screw for Closed Tray 16mm / Open Tray 22mm.

Snap-cap Transfer abutment enables quick and simple impression taking. The cap remains in the impression tray after it is removed from the mouth.

Cement-Retained

L

D

ABUTMENT MATERIAL: Ti-6AL-4VELI (Titanium grade 5). SNAP-CAP MATERIAL: Acetal Polymer. PACKAGED WITH: Abutment Screw SA, and Snap-cap PSOC. TORQUE TIGHTENING: 25 Ncm (Recommendation).

INTERNAL HEX

Cement-Retained

INTERNAL HEX

CAD/CAM 3D PRINTING ANALOGS

Ø3.75

D

Cement-Retained

FOR SCREW-RETAINED RESTORATIONS TYPE Multi-Unit 1.6mm Multi-Unit 1.4mm L 12mm 9mm D Ø4.75mm Ø4.9mm

CODE MU-ANG3D NM-ANG3D

ONE-PIECE IMPLANT ANALOGS

ANALOGS

The analog provides a replica that shows the exact position of a patient's implant. It is made by taking an impression of the patient's teeth and implants and using that impression to create a copy that exactly shows the anatomy of the implant as it exists in the patient's mouth.

MATERIAL: Stainless Steel.

OVERDENTURE RESTORATIONS ANALOGS TYPE GdtLoc Ball Click L 10.5mm 14mm 15mm D Ø4mm Ø3.75mm Ø3.75mm 11. d. Lin CODE AFE AFB AFL

Platform Diameter 8mm

Platform

Diameter

Straight abutments create a tight seal and strong connection to the implant. Stable and reduce trauma

during restoration placement. The shoulder / anatomic / concave Straight Abutments are particularly great for aesthetics and promote faster healing while protecting the implant.

MATERIAL:

Ti-6AL-4VELI (Titanium grade 5). PACKAGED WITH: Abutment Fixation Screw SA / SA-SL. **TORQUE TIGHTENING:**

25 Ncm (Recommendation).

SLI	M Ø3mm Ø3.5mm	NARROW		Platform Diameter	- Ø3.8mm - Ø3.8mm
L.	9mm	5mm	7mm	9mm	llmm
CODE	SA9-SL	SAN5	SAN7	SAN9	SAN11

STANDARD					Platform - Ø Diameter - Ø	3.8mm 4.5mm
L	5mm	7mm	9mm	llmm	13mm	15mm
	Ð					
CODE	SA5	SA7	SA9	SA11	SA13	SA15

WIDE			Platform - Ø3.8mm Diameter - Ø5.5mm
L	9mm	12mm	13mm
CODE	SAW9	SAW12	SAW13

INTERNAL HEX

	STANDARD WITH SHOULDER			Platform - Ø3.8mm Diameter - Ø4.5mm		
L	lmm	2mm	3m	m	4mm	
CODE	SAS1	SAS2	SAS	53	SAS4	

WIDE WITH SHOULDER			Plat Dian	Platform - Ø3.8mm Diameter - Ø5.5mm		
L	lmm	2mm	3mm	4mm		
CODE	SAW1	SAW2	SAW3	SAW4		

Platform

Diameter

Angle

Angle

Platform

Diameter

ANGULATED ABUTMENTS

Cement-Retained

Cement-Retained

Can be used in a single tooth and partially or totally edentulous situations. Used in the fabrication of cement-retained restorations, single crowns, or bridges, can be used in unparticulated insplant placement pages for apple

in unparalleled implant placement cases for angle compensation.

MATERIAL: Ti-6AL-4VELI (Titanium grade 5).

PACKAGED WITH: Abutment Fixation Screw SA / SA-SL. TORQUE TIGHTENING: 25 Ncm (Recommendation).

STA	NDARD 25°	Ø3.8mm Ø4.5mm	35°	Ø3.8mm Ø4.5mm	45°	Ø3.8mm Ø4.5mm
L	9mm	13mm	9m	ım	9m	ım
CODE	ATA25	ATA25L	ATA	35	ATA	445

The anatomic and concave abutments are particularly great for aesthetics and promote faster healing while protecting the implant.

50

Cement-Retained

INTERNAL HEX

PEEK ABUTMENTS

PEEK is described as an excellent combination of strength and elasticity. It is one of the most chemically resistant materials, biocompatible and aesthetic, with low electrical conductivity. The PEEK components are used for short term rehabilitation.

MATERIAL:

PEEK (Polyether ether ketone).

PACKAGED WITH: Abutment Fixation Screw SA. TORQUE TIGHTENING: 15 Ncm (Recommendation).

Cement-Retained

TEMPORARY ABUTMENTS

TITANIUM ABUTMENTS

Easily adapts to a gingival tissue and makes a perfect solid marginal seal between the abutment and the implant.

MATERIAL: Ti-6AL-4VELI (Titanium grade 5). PACKAGED WITH: Abutment Fixation Screw SA. TORQUE TIGHTENING: 20 Ncm (Recommendation).

40 Zr Zirconium 91.224 Platform Diameter

ZIRCONIA ABUTMENTS WITH TITANIUM BASE

Zirconia exhibits exceptional resistance to high temperatures and corrosion caused by alkalis, acids, salt water, and various other substances. Lighter than metal, zirconia possesses remarkable strength, malleability, and ductility. its chemical and physical characteristics bear resemblance to those of titanium. Highly aesthetic and especially good for anterior restorations.

ABUTMENT MATERIAL: Zirconia (ZrO2) With Ti-6AL-4VELI (Titanium grade 5) Base. SCREW MATERIAL: Ti-6AL-4VELI (Titanium grade 5). PACKAGED WITH: Fixation Screw for Zirconia Abutments ZSA. TORQUE TIGHTENING: 30 Ncm (Recommendation).

54

Platform

Diameter

8mm

INTERNAL HEX

8.5mm

Angle

Platform

Diameter

CASTING ABUTMENTS

Cement-Retained

Used by dental technicians for constructing prosthetic restoration. provide excellent grip and optimal connection to the implant. Made of a very strong plastic material that retains its shape.

MATERIAL:

Polyoxymethylene (POM). PACKAGED WITH: Abutment Fixation Screw SA / SA-SL.

TORQUE TIGHTENING:

15 Ncm (Recommendation).

	ANATOMIC	Platform - Ø3.8mm Diameter - Ø5mm	
L.	lmm	2mm	3mm
	4	4	
CODE	PAA2501	PAA2502	PAA2503

CAD/CAM ABUTMENTS

Cement-Retained

GDT 3D CAD/CAM libraries make it easy to design, and create your restorations for our implant platforms.

Fully supported by the top CAD/CAM systems: Exocad and 3Shape.

Our libraries enable precise computerized planning by scanning implants and abutments of all types, the scanned informationused for creating restorations.

The CAD/CAM technology simplifies the process, ensuring accuracy, and speed.

MATERIAL: Ti-6AL-4VELI (Titanium grade 5).

PACKAGED WITH: Abutment Fixation Screw SA / SA-SL / MU-SA / NM-SA. TORQUE TIGHTENING: SA screw - 25 Ncm (Recommendation). MU-SA screw, and NM-SA screw- 15 Ncm (Recommendation).

Scan QR code or refer to GDT Implants website to download our libraries: www.gdentalt.com/cadcam

Ø3

Ø3.8

INTERNAL HEX

INTERNAL HEXAGON PEOSTHETICS

SCREW-RETAINED RESTORATION

Multi l	Jnit 1.6	mm Abu	tments	
Multi l	Jnit 1.4	mm Abu	tments	

62-63 64-66

Cement-Retained

10mm

Screw-Retained

MULTI UNIT 1.6mm ABUTMENTS

Our range of Multi-Unit 1.6mm abutments provides a selection of gingival heights and fits various implant angulation positions.

These Multi-unit abutments are suitable for both slim and standard implant platforms, ensuring compatibility with different implant systems.

• 1.6mm prosthetic connection.

MATERIAL:

Ti-6AL-4VELI (Titanium grade 5).

PACKAGED WITH:

Abutment Fixation Screw **SA / SA-SL**, and Abutment Handle (*Only with Angulated abutments)

TORQUE TIGHTENING:

35 Ncm for Abutments (Recommendation). 20 Ncm for Prosthetic Parts (Recommendation).

COMPONENTS

CODE

Screw-Retained

MULTI UNIT 1.4mm ABUTMENTS

Our range of Multi-unit 1.4mm abutments provides a selection of gingival heights and fits various implant angulation positions.

These abutments feature an angle selection angle of up to 60°, enabling them to effectively address implant divergence of up to 120° in all directions, ensuring optimal parallel alignment.

They are suitable for a wide range of restorations, whether it involves a few teeth or a full-jaw restoration.

• 1.4mm prosthetic connection.

MATERIAL:

Ti-6AL-4VELI (Titanium grade 5).

PACKAGED WITH:

- Abutment Handle.
- Fixation Screw (*Only with Angulated abutments).

TORQUE TIGHTENING:

35 Ncm for Abutments (Recommendation). 20 Ncm for Prosthetic Parts (Recommendation).

COMPONENTS TITANIUM SLEEVE **PLASTIC SLEEVE OPEN TRANSFER** Ø4.9mm 12mm D Ø4.9mm D Ø4.9mm D 12mm 16mm NM-SA NM-SA Screw is Screw is included included NM-TSI NM-PSI NM-TOT **CLOSED TRANSFER** ANALOG **HEALING CAP** Ø4.9mm 8mm Ø4.9mm 18mm D Ø4.9mm 4.8mm NM-SA NM-SA Screw is Screw is included included NM-HC NM-TCT NM-ANG **3D PRINTING ANALOG** SCAN BODY D TITANIUM BASE Ø4.9mm Ø4.9mm 4.5mm D Ø4.9m 9mm 7mm 10mm 13mm NM-SA N. N Screw is included S NM-SB7 NM-SB10 NM-SB13 € NM-TBS NM-ANG3D Premounted ABUTMENT **FIXATION** On Straight HANDLE **SCREW** On NM-SA Angulated

FOR STANDARD AND SLIM 0°					
L (mm) C					
	6	NM-HD06			

NM-30-3

NM-30-4

NM-30-5

CODE

NM-52-2

INTERNAL HEX

Screw-Retained

NM-60-2

Platform - Ø3.8mm ANGULATED 45° SLIM 45 D - Ø4.9mm Diameter - Ø4.9mm 2mm 3mm 2mm 3mm 4mm 5mm CODE NM-45-2-SL NM-45-3-SL NM-45-5 NM-45-2 NM-45-3 NM-45-4 Platform - Ø3.8mm Platform - Ø3.8mm ANGULATED 52° ANGULATED 60° Diameter - Ø4.9mm Diameter - Ø4.9mm 2mm 2mm

INTERNAL HEXAGON PEOSTHETICS OVERDENTURE RESTORATION

Ball Attachment	68-69	
Click Attachment	70-71	
GdtLoc Attachment	72-73	

SILICONE CAP

TITANIUM GRADE 5 (TI-6AL-4V ELI)

TRAIGHT AND ANGULATED

BALL ATTACHMENT

Ang/e

Overdenture

Designed to provide a secure and stable connection

between a denture and dental implants.

Platform - Ø3mm SLIM 0° Diameter - Ø3.6mm 1mm 2mm 3mm 4mm 5mm À BAT1-SL BAT2-SL BAT3-SL BAT4-SL BAT5-SL BAT6-SL

BAT-1810

INTERNAL HEX

BAT-1820

Ø2.5

() 1.25mm

6mm

ž

BAT-1830

Overdenture

CLICK ATTACHMENT

Removable denture attachments system that provides a secure and stable connection between a denture and dental implants.

They consist of two components: a male component, which is placed on the implant and a female component, which is placed on the denture.

The two components are locked ("click") together, creating a secure connection.

MATERIAL:

Ti-6AL-4VELI (Titanium grade 5). **PACKAGED WITH:** Abutment Fixation Screw **SA.**

(*Only with Angulated abutments). TORQUE TIGHTENING:

25 Ncm (Recommendation).

CLICK ATTACHMENT PARTS

ANGULATED 18°		Platf Diam	Platform - Ø3.8mm Diameter - Ø5.2mm	
L	0.5mm	lmm	2mm	3mm
				F
CODE	LOC-1805	LOC-1810	LOC-1820	LOC-1830

		Platform - Ø3.8mm			
ANGULATED 30			Diameter - Ø5.2mm		
L	0.5mm	lmm	2	2mm	3mm
	(S
CODE	LOC-3005	LOC-3010	LO	C-3020	LOC-3030

() 1.25mm

Platform _____ Diameter

INTERNAL HEX

Overdenture

rdenture

INTERNAL HEX

GDTLOC ATTACHMENT

Consist of two components: a male component, which is placed on the implant, and a female component, which is placed on the denture.

The metal housing together with the silicone caps creates a rotational mechanism pivoting ability. It allows a divergence of up to 30° of the implants and a more significant area of contact male and female components.

MATERIAL:

Ti-6AL-4VELI (Titanium grade 5).

PACKAGED WITH:

Abutment Fixation Screw **SA**, and Abutment Handle (*Only with Angulated Abutments).

TORQUE TIGHTENING: 25 Ncm (Recommendation).

GDTLOC ATTACHMENT PARTS

Platform

Diameter

